mts_
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Έχω κολλήσει στην παρακάτω άσκηση:
Να βρεθεί ο γ.τ των Μ(z), αν ισχύει
Λύνεται αν θέσω τον z, αλλά όταν πάω να την λύσω με συζυγίες φτάνω σε κάποιο σημείο και μετά κολλάω..Μια βοήθεια παρακαλώ!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
αφου w e I παιρνεις w=-wσυζηγηΚαλησπέρα!!
Έχω κολλήσει στην παρακάτω άσκηση:
Να βρεθεί ο γ.τ των Μ(z), αν ισχύεικαι
Λύνεται αν θέσω τον z, αλλά όταν πάω να την λύσω με συζυγίες φτάνω σε κάποιο σημείο και μετά κολλάω..Μια βοήθεια παρακαλώ!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mts_
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Καλησπέρα!!
Έχω κολλήσει στην παρακάτω άσκηση:
Να βρεθεί ο γ.τ των Μ(z), αν ισχύεικαι
Λύνεται αν θέσω τον z, αλλά όταν πάω να την λύσω με συζυγίες φτάνω σε κάποιο σημείο και μετά κολλάω..Μια βοήθεια παρακαλώ!!
έγραψα οτι χρησιμοποιώντας συζυγίες φτάνω μέχρι κάποιο σημείο και κολλάω ΚΑΙ ΟΧΙ ότι είμαι εντελώς άσχετος και ότι δεν ξέρω να χρησιμοποιώ συζυγίες..όποιος θέλει να βοηθήσει ας την λύσει με συζυγίες και να ποστάρει τα βήματα παρακαλώ..αφου w e I παιρνεις w=-wσυζηγη
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
χρηστοσ17
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
-----------------------------------------
έγραψα οτι χρησιμοποιώντας συζυγίες φτάνω μέχρι κάποιο σημείο και κολλάω ΚΑΙ ΟΧΙ ότι είμαι εντελώς άσχετος και ότι δεν ξέρω να χρησιμοποιώ συζυγίες..όποιος θέλει να βοηθήσει ας την λύσει με συζυγίες και να ποστάρει τα βήματα παρακαλώ..
τι βγαινει ?
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
18vasilis
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Καλησπέρα!!
Έχω κολλήσει στην παρακάτω άσκηση:
Να βρεθεί ο γ.τ των Μ(z), αν ισχύεικαι
Λύνεται αν θέσω τον z, αλλά όταν πάω να την λύσω με συζυγίες φτάνω σε κάποιο σημείο και μετά κολλάω..Μια βοήθεια παρακαλώ!!
με
με συμπλήρωση τετραγώνων (να τις κάνεις εσύ)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Cr0ne
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Να δειξετε οτι ο γεωμετρικος τοπος C των εικονων του μιγαδικου z για τον οποιο ισχυει z=λ+1/λ-i, λ ανηκει R, ειναι κυκλος που διερχεται απο την αρχη των αξονων Ο.
Αυτο που σκεφτηκα ειναι απαλοιφη της παραμετρου λ αλλα δεν ειχε επιτυχια, μετα σκεφτηκα πως για να περναει απ την αρχη των αξονων ο κυκλος η μια λυση θα ειναι η z=0 αρα λ=-1 αλλα αυτο δεν βοηθησε σε τιποτα. (μπορει και να ειναι λαθος η σκεψη)
Ευχαριστω για τον χρονο σας
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
18vasilis
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ο παρονομαστής είναι στο 1 ή στο (λ+1);;;Καλησπερα, να η απορια μου:
Να δειξετε οτι ο γεωμετρικος τοπος C των εικονων του μιγαδικου z για τον οποιο ισχυει z=λ+1/1-i, λ ανηκει R, ειναι κυκλος που διερχεται απο την αρχη των αξονων Ο.
Αυτο που σκεφτηκα ειναι απαλοιφη της παραμετρου λ αλλα δεν ειχε επιτυχια, μετα σκεφτηκα πως για να περναει απ την αρχη των αξονων ο κυκλος η μια λυση θα ειναι η z=0 αρα λ=-1 αλλα αυτο δεν βοηθησε σε τιποτα. (μπορει και να ειναι λαθος η σκεψη)
Ευχαριστω για τον χρονο σας
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Cr0ne
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
nikosb
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Moυ βγαινει λαθος... απο του μπαρλα σελ 30 ασκ 18
edit ok το βρηκα
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
valia_92
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
"Αν ισχύουν z1+z2+z3=0 και |z1|+|z2|+|z3|=ρ>0 να δείξετε ότι
![](/proxy.php?image=http%3A%2F%2Fwww.e-steki.gr%2Fimages%2Fimported%2F2009%2F08%2Feqlatex7Bz17D5E7B2v7D7Bz27D5E7B2v7D7Bz37-1.gif&hash=e90aafc6d231a41c9444736a6ed0f8ae)
![](/proxy.php?image=http%3A%2F%2Fwww.e-steki.gr%2Fimages%2Fimported%2F2009%2F08%2Feqlatex20N5Cast-2.gif&hash=f7120e639cabe893660bb3e1cdcbf6fb)
ευχαριστω~
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
18vasilis
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
γεια σας.. ειχα ρωτησει και πιο πριν αλλα κανεις δεν μ απαντησε. ριξτε μια ματια pleaseeee ολο και καποιος θα την καταφερει:
"Αν ισχύουν z1+z2+z3=0 και |z1|+|z2|+|z3|=ρ>0 να δείξετε ότι,ν ανήκει
"![]()
ευχαριστω~
για ξανα κοίτα την άσκηση που δίνεις
νομίζω πως κάτι γράφεις λάθος !
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
manos66
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Καλησπερα, να η απορια μου:
Να δειξετε οτι ο γεωμετρικος τοπος C των εικονων του μιγαδικου z για τον οποιο ισχυει z=λ+1/λ-i, λ ανηκει R, ειναι κυκλος που διερχεται απο την αρχη των αξονων Ο.
Αυτο που σκεφτηκα ειναι απαλοιφη της παραμετρου λ αλλα δεν ειχε επιτυχια, μετα σκεφτηκα πως για να περναει απ την αρχη των αξονων ο κυκλος η μια λυση θα ειναι η z=0 αρα λ=-1 αλλα αυτο δεν βοηθησε σε τιποτα. (μπορει και να ειναι λαθος η σκεψη)
Ευχαριστω για τον χρονο σας
Διαιρώντας κατά μέλη
Αντικαθιστώντας το λ στη σχέση του y προκύπτει
...
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Cr0ne
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
gimli
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Black_Butterfly
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ΚΑΛΗΜΕΡΑ... .Αν για το μιγαδικό z ισχύει (1+z)^ν - z^ν = 0 , όπoυ νεN με ν>1, να δειξετε ότι Re(z) = - 1 /2
Καλημέρα!
Άρα:
1+z=z => 1= 0 --> απορρίπτεται
1+z=-z => 2*z=-1 -> z=-1/2 => χ+ ψι = -1/2 +0i
χ=-1/2 => Re(Z) = - 1/2
Νομίζω έτσι λύνεται. :what:Δεν είμαι 100% σίγουρη
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
greggr
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αν και έχει περάσει πολύς καιρός από τότε που τις έλυνα θυμάμαι ότι τυπικά δεν είναι στην ύλη μια ρίζα σε μιγαδικό αριθμό (π. του 1+i). Οπότε στην αρχή που τα πας στα δυο μέλη πρέπει πρώτα να πάρεις μέτρα και μετά να βγάλεις την δύναμη.....
Προσέχετε κάτι τέτοια γιατί είναι λίγο πονηρά και μπορεί να χάσετε μονάδες
![Κλάμα :'( :'(](https://www.e-steki.gr/images/smilies/cry.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
hale
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
(1+z)^ν - z^ν = 0 <=> (1+z)^v = z^v <=> |1+z|^v = |z|^v <=> |1+z| = |z| <=> |1+z|^2 = |z|^2 <=> (1+z)*(1+zσυζ) = z*zσυζ <=> 1+zσυζ+z+z*zσυζ = z*zσυζ <=> 1+zσυζ+z = 0 <=> zσυζ+z = -1 <=> 2Re(z) = -1 <=> Re(z) = -1/2ΚΑΛΗΜΕΡΑ... .Αν για το μιγαδικό z ισχύει (1+z)^ν - z^ν = 0 , όπoυ νεN με ν>1, να δειξετε ότι Re(z) = - 1 /2
Ξέρουμε ότι Re(z) = (z+zσυζ)/2 <=> z+zσυζ = 2Re(z)
zσυζ = z συζυγές
![Bye :bye: :bye:](https://www.e-steki.gr/images/smilies/2018/bye.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DJLouis
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Έστω f:R->R για την οποία ισχύει
f(f(χ))+[f(x)]^3=2χ+3 , για κάθε χER
Α)Ν.Δ.Ο η f είναι "1-1"
Β)Να λύσετε την εξίσωση: f(2[χ^3]+χ)=f(4-χ)
Και ποιο μετα αν μπορει καποιος εχω κ μια απορεια πανο σε καποια μεθοδολογια.... ΤΥ!!!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
hale
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αφου η f είνα 1-1 άρα είναι γνησίως μονότονη οπότε έχουμεΚαλησπέρα παιδια θελω βοηθεια με αλλη μια ασκησουλα..... ΛΠΝ....
Έστω f:R->R για την οποία ισχύει
f(f(χ))+[f(x)]^3=2χ+3 , για κάθε χER
Α)Ν.Δ.Ο η f είναι "1-1"
Β)Να λύσετε την εξίσωση: f(2[χ^3]+χ)=f(4-χ)
Και ποιο μετα αν μπορει καποιος εχω κ μια απορεια πανο σε καποια μεθοδολογια.... ΤΥ!!!!
f(2[x^3]+x) = f(4-x) <=> 2x^3 + x = 4 - x <=> 2x^3 + 2x - 4 = 0 <=> x^3 +x - 2 = 0 και λύνεις αυτή την εξίσωση.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ledzeppelinick
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Καλησπέρα παιδια θελω βοηθεια με αλλη μια ασκησουλα..... ΛΠΝ....
Έστω f:R->R για την οποία ισχύει
f(f(χ))+[f(x)]^3=2χ+3 , για κάθε χER
Α)Ν.Δ.Ο η f είναι "1-1"
Β)Να λύσετε την εξίσωση: f(2[χ^3]+χ)=f(4-χ)
Και ποιο μετα αν μπορει καποιος εχω κ μια απορεια πανο σε καποια μεθοδολογια.... ΤΥ!!!!
Σε τετοιες ασκησεις δουλευεις με τον ''ορισμο'' της ''1-1'' και καταληγεις στο ζητουμενο. δηλαδη:
Α)Εστω χ1,χ2 εR τετοια ωστε f(x1)=f(x2) => f(f(x1))=f(f(x2)) [αν α=β τοτε f(a)=f(b)] επισης εχουμε f(x1)=f(x2) => [f(x1)]^3=[f(x2)]^3. Προσθετωντας τις δυο αυτες σχεσεις που καταληξαμε εχουμε:
f(f(χ1))+[f(x1)]^3= f(f(χ2))+[f(x2)]^3 που απο την δοθεισα σχεση ισοδυναμει με 2χ1+3=2χ2+3 => 2χ1=2χ2 => χ1=χ2 άρα απο τον ''ορισμο'' της ''1-1'' η f ειναι ''1-1''
Β)αφου η f ειναι ''1-1'' τοτε η εξισωση γραφεται 2(χ^3)+χ=4-χ και λυνεις αυτη την εξισωση
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 32 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 226 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.