qwerty111
Πολύ δραστήριο μέλος



Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
akiroskirios
Δραστήριο μέλος


Εγώ θα ήθελα να ρωτήσω κάτι σχετικά με την απλή συνεπαγωγή και την ισοδυναμία. Όταν κάποιος μου ζητάει να αποδείξω μια σχέση (π.χ. α=β), τότε μπορώ με ισοδυναμίες να καταλήξω σε μια σχέση που ισχύει και επομένως αληθής θα είναι και η σχέση με την οποία ξεκίνησα. Μέχρι τώρα δεν έχω κάποια απορία. Όταν όμως μια άσκηση μου ζητάει π.χ. να υπολογίσω το ημχ αν π<χ<π/2 και ξέρω ότι ημ2χ = 1/4 τότε μπορώ να πω ημ2χ = 1/4ημχ = 1/2
Όμως δεν χρειάζεται μετά να επιστρέψω από τη δεύτερη σχέση στην πρώτη, οπότε θα μπορούσα να πω ημ2χ = 1/4ημχ = 1/2 χρησιμοποιώντας απλή συνεπαγωγή αντί για ισοδυναμία ακόμα και αν η ισοδυναμία στέκει; Ρωτάω όλα αυτά προκειμένου σε μια άσκηση στην οποία ΔΕΝ χρείαζεται να αποδείξω μια σχέση, να χρησιμοποιώ ΜΟΝΟ απλή συνεπαγωγή αντί για διπλή συνεπαγωγή προκειμένου να μην διατρέχω τον κίνδυνο να χρησιμοποιήσω κάπου διπλή συνεπαγωγή όπου δεν ισχύει. Πιστεύω να καταλάβατε τι εννοώ.
Ευχαριστώ εκ των προτέρων
(το παράδειγμα με το ημx που γράφεις είναι λάθος)...ισοδυναμία χρησιμοποιούμε συνήθως όταν ξεκινάμε από το ζητούμενο και θέλουμε να καταλήξουμε σε κάτι που ισχύει...όταν όμως ξεκινάμε από ένα δεδομένο και θέλουμε να καταλήξουμε στο ζητούμενο δεν είναι απαραίτητο να χρησιμοποιήσουμε ισοδυναμία για να μν διατρέξουμε κάποιον κίνδυνο όπως αναφέρεις (ακόμα κι αν αυτή ισχύει)...σε αυτή την περίπτωση μας ενδιαφέρει η συνεπαγωγή δλδ η προς τα δεξιά "ροή"...
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
qwerty111
Πολύ δραστήριο μέλος



Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


Ευχαριστώ! Το μόνο που δεν κατάλαβα όμως είναι γιατί η διπλή συνεπαγωγή στο παράδειγμά μου με το ημίτονο είναι λάθος. Αφού μπορούμε να επιστρέψουμε από το δεύτερο μέλος στο πρώτο![]()
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
qwerty111
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
qwerty111
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.


άλλο το 2ημχ και αλλο το ημ2χ

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


Είπα ημ2χ = 1/4, δηλαδή ημχ=+-1/2 και επειδή π<χ<π/2, το ημίτονο είναι θετικός αριθμός, άρα ημχ =+1/2. Πού είναι το λάθος;
Και σου είπα ότι

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
qwerty111
Πολύ δραστήριο μέλος




Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


Μάλλον θα έγινε κάποια παρεξήγηση. το 2 είναι εκθέτης και το έβαλα έτσι επειδή δεν μπορούσα να βρω πώς βάζω εκθέτη.![]()
Omg, συνεννοούμαστε πάντως...

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
qwerty111
Πολύ δραστήριο μέλος



Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


edit: Επίσης, τώρα που το βλέπω, δε γίνεται να ισχύει η

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
qwerty111
Πολύ δραστήριο μέλος



Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rea_94
Εκκολαπτόμενο μέλος


1) τετράπλευρο ΑΒΔΓ και βαρύκεντρα Α1, Β1, Γ1, Δ1 των ΒΓΔ, ΑΓΔ, ΑΒΔ, ΑΒΓ τριγώνων αντίστοιχα. νδο=> ΑΑ1+ΒΒ1+ΓΓ1+ΔΔ1=0 (όλα αυτά διανύσματα)
Δοκίμασα τη σχέση GA+GB+GΓ=0 σε όλα, πρόσθεσα τις σχέσεις, με διαφορετικές σειρές μετά ξανά. και ΤΙΠΟΤΑ δε βγαίνει

Και η άλλη είναι
2) Αν διανυσμα α και β μη συγγραμικά διανύσματα, να βρεθεί ο λΕR ώστε τα διανύσματα α+λβ και 2α-(λ+1)β είναι παράλληλα.
Σε αυτό σκέφτηκα ότι πρέπει να ισχυεί κάτι σαν 2α-(λ+1)β=κ(α+λβ) και μου βγαίνει ότι κ=2 και λ=1/3 αλλά δεν επαληθεύεται η σχέση μάλλον κάνω ό,τι να ναι...

Aν μπορεί να με βοηθήσει κάποιος θα είμαι τέρμα ευγνώμων!!!!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Weierstrass
Νεοφερμένος


Παιδια βοήθεια, τα έχς παίξει με μαθ. κατ!!!! Έχω εδώ δυο ασκήσεις και δε μου βγαίνουν, δοκίμασα τα πάντα!
1) τετράπλευρο ΑΒΔΓ και βαρύκεντρα Α1, Β1, Γ1, Δ1 των ΒΓΔ, ΑΓΔ, ΑΒΔ, ΑΒΓ τριγώνων αντίστοιχα. νδο=> ΑΑ1+ΒΒ1+ΓΓ1+ΔΔ1=0 (όλα αυτά διανύσματα)
Δοκίμασα τη σχέση GA+GB+GΓ=0 σε όλα, πρόσθεσα τις σχέσεις, με διαφορετικές σειρές μετά ξανά. και ΤΙΠΟΤΑ δε βγαίνειέλεος >.<
Και η άλλη είναι
2) Αν διανυσμα α και β μη συγγραμικά διανύσματα, να βρεθεί ο λΕR ώστε τα διανύσματα α+λβ και 2α-(λ+1)β είναι παράλληλα.
Σε αυτό σκέφτηκα ότι πρέπει να ισχυεί κάτι σαν 2α-(λ+1)β=κ(α+λβ) και μου βγαίνει ότι κ=2 και λ=1/3 αλλά δεν επαληθεύεται η σχέση μάλλον κάνω ό,τι να ναι...![]()
Aν μπορεί να με βοηθήσει κάποιος θα είμαι τέρμα ευγνώμων!!!!!
Στην πρώτη σου άσκηση χρησιμοποιείς την σχέση των διανυσμάτων που ισχύει για τις διαμέσους. Δηλαδή έστω τρίγωνο ΑΒΓ και διάμεσος ΑΜ τότε ΑΜ = (ΑΒ + ΑΓ)/2 (όλα διανύσματα). Βρίσκεις δηλαδή τις 4 σχέσεις για τις διαμέσους και προσθέτεις κατα μέλη.
Στην δεύτερη άσκηση σου πρέπει να προκύψει ότι α+λβ = κ(α + λβ). Στο πρώτο μέλος, ο συντελεστής του α είναι 1 και στο δεύτερο μελος ο συντελεστής του α είναι 2. Άρα υποψιάζεσαι ότι κ=2. Άρα βγάζοντας κοινό παράγοντα το 2 από το 2 μέλος,
έχεις α + λβ = 2(α - [(λ+1)/2]β). Άρα λ = -(λ+1)/2 από την οποία προκύπτει λ=-1/3. Και για επαλήθευση, α - (1/3)β = 2(α -(1/3)β).
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
OoOkoβοldOoO
Πολύ δραστήριο μέλος


ΕΚΤΟΣ ΥΛΗΣ Καλά ότι θέλουν βάζουν αυτοί οι καθηγητές!!!1) τετράπλευρο ΑΒΔΓ και βαρύκεντρα Α1, Β1, Γ1, Δ1 των ΒΓΔ, ΑΓΔ, ΑΒΔ, ΑΒΓ τριγώνων αντίστοιχα. νδο=>
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rea_94
Εκκολαπτόμενο μέλος


Άρα για τη δεύτερη στα πρόσημα είχα το λάθος ^^!!!Στην πρώτη σου άσκηση χρησιμοποιείς την σχέση των διανυσμάτων που ισχύει για τις διαμέσους. Δηλαδή έστω τρίγωνο ΑΒΓ και διάμεσος ΑΜ τότε ΑΜ = (ΑΒ + ΑΓ)/2 (όλα διανύσματα). Βρίσκεις δηλαδή τις 4 σχέσεις για τις διαμέσους και προσθέτεις κατα μέλη.
Στην δεύτερη άσκηση σου πρέπει να προκύψει ότι α+λβ = κ(α + λβ). Στο πρώτο μέλος, ο συντελεστής του α είναι 1 και στο δεύτερο μελος ο συντελεστής του α είναι 2. Άρα υποψιάζεσαι ότι κ=2. Άρα βγάζοντας κοινό παράγοντα το 2 από το 2 μέλος,
έχεις α + λβ = 2(α - [(λ+1)/2]β). Άρα λ = -(λ+1)/2 από την οποία προκύπτει λ=-1/3. Και για επαλήθευση, α - (1/3)β = 2(α -(1/3)β).
Ευχαριστώ πάρα πολύ!!!!


Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Giorgio-PD
Εκκολαπτόμενο μέλος


Έστω ΑΒΓΔ παρ/μο και σημεία Ε,Ζ : προβολές των Δ,Β στη διαγώνιο ΑΓ.
Ν.δ.ο. διανύσματα ΔΖ = -ΒΕ

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Weierstrass
Νεοφερμένος


Χρειάζομαι βοήθεια σε μια άσκηση....
Έστω ΑΒΓΔ παρ/μο και σημεία Ε,Ζ : προβολές των Δ,Β στη διαγώνιο ΑΓ.
Ν.δ.ο. διανύσματα ΔΖ = -ΒΕ![]()
Δείξε την ισότητα των τριγώνων ΑΒΖ και ΓΕΔ και μετά χρησιμοποιήσε την σχέση διανυσμάτων ΖΒ + ΒΕ + ΕΔ +ΔΖ = 0.
Όμως ΖΒ + ΕΔ = 0 (από ισότητα τριγώνων και αντίθετη φορά διανυσμάτων). Άρα ΔΖ = -ΒΕ .
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
- Status
- Το θέμα δεν είναι ανοιχτό για νέες απαντήσεις.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 4 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 18 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.