ηράκλειος
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
ποιός μπορεί να λύσει στους ακέριαιους την εξίσωση : 12x + κ*κ - κ = 333 ;
Πρόσεξε ότι:
(αφού περιττός - άρτιος = περιττός)
Όμως (γινόμενο δυο διαδοχικών αριθμών πάντα άρτιος). Έτσι έχουμε περιττός = άρτιος , αρά δεν έχει λύσεις στο .
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ηράκλειος
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Το 333 είναι περιττός. Το 12χ είναι περιττός:
Έχουμε δύο περιττούς τους 2μ+1 και 2ν+1. Και τους αφαιρούμε: (2μ+1)-(2ν+1)=2μ-2ν=2(μ-ν) που είναι άρτιος. Άρα "περιττός" - "περιττός" = "άρτιος".
Συνεπώς τελικά φτάνουμε σε έναν άρτιο που είναι ίσος με έναν άλλον άρτιο. Έτσι δεν είναι;
Εννοείται πως περιμένω απάντηση από όποιονδήποτε ξέρει και όχι αποκλειστικά από το "mostel".
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Η αποδειξη:
2κ*2μ προφανες
2κ*(2μ+1)=2(2κμ+κ)
qed.
Αρα εχεις περιττος - αρτιος .
Και ειμαι ο mostel
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Όταν είπα πριν το(ν) "mostel" είχα ξεχάσει το ν...
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ηράκλειος
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
1η Λύση
Για α=β=1, δεν ισχύει...
επομένως
Από εδώ προκύπτει όμως ότι
Η ισότητα ισχύει αν
2η Λύση
Έστω με
Τότε υπάρχουν ακέραιοι, θετικοί, τέτοιοι ώστε
με
Έχουμε δλδ:
Δηλαδή
Άρα
Δηλαδή:
Παρομοίως
Άρα
Όμως
Άρα
Έτσι προκύπτει ότι
Δηλαδή:
Από εδώ ή . Για όμως έχουμε άτοπο. Άρα .
Δηλαδή τελικά:
and we are done
EDIT:
Δεν είδα ότι μιλούσες για θετικούς ακέραιους στο προηγούμενό σου post, για αυτό και τώρα έκανα edit το post μου.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ηράκλειος
Νεοφερμένος
α) Η άσκηση δεν αναφέρεται σε θετικούς ακεραίους αλλά σε θετικούς , μόνο το περιεχόμενο της παρένθεσης αποδείχθηκε η ανισότητα που ζητάω όμως , όχι !
β) στην 1η λύση γράφεις : (α-1)(β-1)>1 όμως : (α-1)(β-1) = αβ -α -β + 1 = αβ -(α+β)+1 = 1 (αφού έχουμε υποθέση ότι αβ = α + β)
γ) περιμνω την λύση της ανισότητας
δ) περιμένω άσκησή σου!!! Για σου!!!!
το γ και το δ αποτελούν 1 πράγμα!!!!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Τώρα επειδή από την υπόθεση ισχύει , ψάχνουμε πότε ισχύει η ισότητα.
Θύμησέ μου λίγο την αρχική άσκηση όμως, γιατί την έχω ξεχάσει και το ποστ σου έχει σβηστεί!
Δες και μία άλλη θεωρία αριθμών:
Έστω ένας πρώτος αριθμός. Αν , τότε να δειχθεί ότι .
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
bobiras11
Εκκολαπτόμενο μέλος
Ποπο.. Δεν κατάλαβα τίποτα. Αλλά φάνηκες πολύ διαβασμένος ούτε καθηγητής φίλε..Για θετικούς ακεραίους η μοναδική λύση είναι η α=β=2..
1η Λύση
[...]
2η Λύση
[...]
Δηλαδή τελικά:
[...]
and we are done
EDIT:
Δεν είδα ότι μιλούσες για θετικούς ακέραιους στο προηγούμενό σου post, για αυτό και τώρα έκανα edit το post μου.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Δες και μία άλλη θεωρία αριθμών:
Έστω ένας πρώτος αριθμός. Αν , τότε να δειχθεί ότι .
-----------------------------------------------
Για τη λύση χρησιμοποιείς το κριτήριο του Wolstenholme, το οποίο λέει:
Εάν πρώτος με , τότε ο αριθμητής του κλάσματος , διαιρείται από το .
Ε, μετά η άσκηση απλουστεύει
Ευχαριστώ τον φίλο Αλέξανδρο Συγγελάκη (Hellenic Mathematical Society trainer) για το feedback :no1:
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Το είναι πραγματικός αριθμός. Για ποια τιμή του οι ευθείες είναι παράλληλες;
Υπενθύμιση: cos = συν και sin = ημ
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Undead
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Anarki
Διάσημο μέλος
Ορίστε:
Ξαναλέω, πρέπει να δειχτεί οτι δεν ισχύει το παραπάνω και δεν ξέρω αν λύνεται.
Ψηθείτε .
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Αντιπαράδειγμα:
Αν
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Anarki
Διάσημο μέλος
Με τον εξής επιπλέον περιορισμό που δεν έγραψα απο πάνω:
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
bobiras11
Εκκολαπτόμενο μέλος
Α και μήπως μπορεί κάποιος να γράψει αναλυτικά τι γίνεται μετά με την ισότητα
1453κ^2008+2=ημ2007λ-(ρίζα)3συν2007λ ? Βασικά το λ είναι μέσα στη γωνία?
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Πρόσεξε ότι το πρώτο μέλος είναι πάντα μεγαλύτερο ίσο του 2 ενώ το δεύτερο μικρότερο ή ίσο (πολλαπλασίασε με 2 και διαίρεσε με 1/2 για να το φέρεις στη μορφή ημ(α-β))
Στέλιος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Anarki
Διάσημο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
- Status
- Το θέμα δεν είναι ανοιχτό για νέες απαντήσεις.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 2 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 18 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.