Προσπάθησα με ότι μαθηματικά θυμάμαι από το Λύκειο, και νομίζω ότι ήταν αρκετά εύκολη. Απλά έπρεπε να βρεις εσύ τιμές για τα διαστήματα. Εκτός αν έκανα καμία χοντρή πατάτα.
f'(x) = 3x^2 - 8, με ρίζες τις +/- -2 ριζα (2/3).
Για χ < -2 ριζα (2/3), η f' > 0, άρα η f γνησίως αύξουσα.
Για -2 ριζα (2/3) < χ < 2 ριζα (2/3), η f' < 0, άρα η f γνησίως φθίνουσα.
Για χ > 2 ριζα (2/3), η f' > 0, άρα η f γνησίως αύξουσα.
Από τα παραπάνω, στο
α) f(0) = 10, f(1) = 3 και στο διάστημα (0, 1) η f είναι γνησίως φθίνουσα. Επειδή 10 > π > 3, από το ΘΕΤ προκύπτει ότι στο διάστημα (0, 1) υπάρχει μία ακριβώς τιμή που είναι ίση με π.
β) lim f(x) με χ -> -οο είναι -οο και f(-3) = 7. Στο διάστημα (-οο, -3) η f είναι γνησίως φθίνουσα, και αφού τείνει στο άπειρο, υπάρχει ακριβώς μία τιμή σε αυτό το διάστημα στην οποία ισούται με -ρίζα(3).
γ) Το lim f(x) με χ -> +οο είναι +οο και f(2) = 2. Στο διάστημα (2, +οο) η f είναι γνησίως αύξουσα, και αφού τείνει στο άπειρο, υπάρχει ακριβώς μία τιμή στο (2, +oo) στην οποία ισούται με 5000000.
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.