explorer
Εκκολαπτόμενο μέλος
Περιττός είναι ο αριθμός που δεν έχει για διαιρέτη το 2 και τα πολλαπλάσιά του.Τι εννοείς ότι ένας περιττός αριθμός δεν είναι πάντα πρώτος;
Πρώτος είναι ο αριθμός που σαν διαιρέτη έχει μόνο τη μονάδα και τον εαυτό του. (1)
Περιττός είναι ο αριθμός που σαν διαιρέτη έχει μόνο τη μονάδα και τον εαυτό του. (2)
Από (1) και (2) => πρώτος= περιττός (εκτός από το 2)
Kαι ναι ξάροπ αυτό ισχύει σε όλο το R.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Και εντάξει, δεν θα βάλουμε μιγαδικούς μέσα. Το θέμα είναι ότι σίγουρα ένας άρτιος μπορεί να πάρει τη μορφή του αθροίσματος δυο περιττών, αλλά δεν ξέρω αν θα είναι πάντα πρώτοι αυτοί.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
andreask
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος
Ξέχασα τι είναι ο περιττός αριθμός..
Βασικά δεν ξέχασα, αλλά μέσα στον ενθουσιασμό μου το άφησα σε δεύτερη μοίρα..
Ενθουσιασμένος γαρ
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος
Κι ήταν θέμα εξετάσεων αυτό ας πούμε; Τι ακριβώς εξέταζε;
-----------------------------------------
Για το τελευταίο που ζητητάτε, κάθε άρτιος θετικός ακέραιος μεγαλύτερος του 2 μπορεί να γραφεί ως άθροισμα δύο πρώτων (καμία σχέση με το περιττός, πέραν του γεγονότος ότι όλοι οι πρώτοι είναι περιττοί, εξαιρώντας το 2), αυτό είναι η εικασία του Goldbach.
Στους μιγαδικούς, εκτός των πραγματικών, δεν υπάρχει κανένα νόημα να μιλάμε για αρνητικούς, θετικούς, περιττούς, άρτιους κλπ. Δεν ορίζονται οι έννοιες, όπως δεν ορίζεται και η έννοια της διάταξης, δηλαδή δεν μπορούμε να μιλάμε για σύγκριση μιγαδικών.
-----------------------------------------
Σύμφωνα με την εικασία Goldbach, κάθε θετικός ακέραιος μεγαλύτερος του 2 γράφεται ως άθροισμα δύο πρώτων. Δεν ξέρουμε, όμως, αν οι πρώτοι θα είναι και περιττοί, δεδομένου ότι μπορούμε να μιλάμε για το δύο. Προσφέρω αντιπαράδειγμα το 2+2=4. Είναι άθροισμα δύο πρώτων, αλλά μη περιττών αριθμών. Οπότε, ξαρόπ, ισχύει το ανάποδο από αυτό που λες.
-----------------------------------------
Και δεν είναι κάθε περιττός αριθμός πρώτος, το 9 δεν είναι, ούτε κάθε πρώτος αριθμός περιττός, το 2 δεν είναι. Κι επίσης, όταν λέμε "κάθε" δε μπορούμε αυθαίρετα να εξαιρούμε ό,τι βολεύει. Όταν λες ΓΙΑ ΚΑΘΕ πρώτο αριθμό, υποχρεωτικά περιλαμβάνεις το δύο. Διαφορετικά ό,τι λες δεν ισχύει για τους πρώτους αριθμούς, ως σύνολο.
-----------------------------------------
Κι επιπλέον είναι εικασία, δεν είναι ούτε θεώρημα, ούτε αξίωμα. Δεν γνωρίζουμε αν ισχύει. Απλά μέχρι τώρα επιβεβαιώνεται. Δεν έχει αποδειχτεί.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος
Πλάκα, πλάκα, αν μιλούσε ξέρω γω για 100 πωλητές κι αν είχε καναδυο ερωτηματάκια παραπάνω, άνετα έμπαινε 3ο θέμα.
-----------------------------------------
Α, σημειώνω και παραδέχομαι ότι η εκφώνηση του ζητήματος ήταν σαφέστατη.
-----------------------------------------
Και σου ξαναλέω, αυτά δεν είναι Μαθηματικά για έξυπνους. Είναι μαθηματικά για τους ετήσιους λογαριασμούς του μπαρμπα-Μανώλη με το μανάβικο στη γωνία. Πολύ απλοποιημένα, βέβαια, δεν έχει μέσα ούτε εισφορές, ούτε ΙΚΑ, ούτε ΦΠΑ, ούτε έξοδα λειτουργίας, ούτε, ούτε...
Γιατί δε βάζεις τίποτα από ΕΜΕ;
Η απλούστερη άσκηση των Πιθανοτήτων, αμφιβάλλω αν καταδέχεται να τη γράψει κι ο Μπάρλας στο βιβλίο του. Γιατί δε μου τα πατε πιο πριν να πάω να δώσω εξετάσεις στην Κύπρο;
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lostG
Εκκολαπτόμενο μέλος
Μόλις γύρισα από μιά πολύωρη έξοδο και ευτυχώς δεν ήπια πολύ έτσι τη γλύτωσα και στο μπλόκο που μας έκανε η τροχαία.Πριν σας καληνυχτίσω ή μάλλον σας καλημερίσω να πω μιά στρατηγική.Καλά βάζω.
Η Aννίκα και η Ρεβέκκα παίζουν το παρακάτω παιχνίδι:
Τοποθετούν σε ένα τραπέζι 22 σπίρτα και στη συνέχεια η μία μετά την άλλη παίρνουν κάθε φορά ένα ή δύο ή τρία σπίρτα. Όποιος πάρει τελευταίος σπίρτα κερδίζει. Αν παίζει πρώτη η Αννίκα, τι στρατηγική πρέπει να ακολουθήσει για να κερδίσει το παιχνίδι;
:p
Η Aννίκα τραβάει πρώτη και επειδή είναι έξυπνη θα τραβήξει δύο σπίρτα.Έπειτα κάθε φορά που θα τραβάει η Ρεββέκα ανεξάρτητα από το πόσα σπίρτα θα τραβάει, η Αννίκα απλά θα φροντίζει να τραβάει τόσα, ώστε να συμπληρώνει τετράδες, συμπεριλαμβανομένων των σπίρτων που τράβηξε νωρίτερα η Ρεββέκα.Έτσι καθώς το παιχνίδι προχωρά θα φτάσουν στον μαγικό αριθμό 18 όπου σειρά έχει η δύστυχή Ρεββέκα!
Ε ότι και να τραβήξει μετά την... έκατσε.
And the winner is Annika!!:bravo:Αννίκα!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Μόλις γύρισα από μιά πολύωρη έξοδο και ευτυχώς δεν ήπια πολύ έτσι τη γλύτωσα και στο μπλόκο που μας έκανε η τροχαία.Πριν σας καληνυχτίσω ή μάλλον σας καλημερίσω να πω μιά στρατηγική.
Η Aννίκα τραβάει πρώτη και επειδή είναι έξυπνη θα τραβήξει δύο σπίρτα.Έπειτα κάθε φορά που θα τραβάει η Ρεββέκα ανεξάρτητα από το πόσα σπίρτα θα τραβάει, η Αννίκα απλά θα φροντίζει να τραβάει τόσα, ώστε να συμπληρώνει τετράδες, συμπεριλαμβανομένων των σπίρτων που τράβηξε νωρίτερα η Ρεββέκα.Έτσι καθώς το παιχνίδι προχωρά θα φτάσουν στον μαγικό αριθμό 18 όπου σειρά έχει η δύστυχή Ρεββέκα!
Ε ότι και να τραβήξει μετά την... έκατσε.
And the winner is Annika!!:bravo:Αννίκα!
Το ίδιο βρήκα κι εγώ! Απλώς είχα στο νου μου τη Ρεβέκκα, οπότε βρήκα τρόπο να κάνει η Αννίκα την Ρεβέκκα να κερδίσει, παίρνοντας ένα σπίρτο και μετά το άθροισμα που θα έπαιρναν ανά γύρο να ήταν πολλαπλάσιο του 3.
Το παράδειγμα που έφερες miv (2+2=4) είναι η μοναδική εξαίρεση όπου ο πρώτος δεν είναι περιττός, και ισχύει μόνο σε αυτό το άθροισμα. Μετά σε όποιον πρώτο μεγαλύτερο του δύο προσθέσεις το 2 δεν θα έχεις άρτιο ακέραιο.
Όσο για τα άλλα, τα ίδια έλεγα κι εγώ (κάθε περιττός δεν είναι πρώτος) κλπ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kvgreco
Εκκολαπτόμενο μέλος
Άμα σου πω ότι πήγα στο φεγγάρι θα το πιστέψεις?Το ίδιο βρήκα κι εγώ! Απλώς είχα στο νου μου τη Ρεβέκκα, οπότε βρήκα τρόπο να κάνει η Αννίκα την Ρεβέκκα να κερδίσει, παίρνοντας ένα σπίρτο και μετά το άθροισμα που θα έπαιρναν ανά γύρο να ήταν πολλαπλάσιο του 3.
Πάντως είσαι πολύ μεγαλόψυχος ώστε να μη θες να κερδίζεις εσύ στα παιχνίδια αλλά να αφήνεις τον άλλο να είναι ο νικητής!
Πες μας το συλλογισνό σου γιατί τη βρίσκω πολύ μικρή τη πιθανότητά σου στο α.1 ερώτημα.Σκέψου ότι λέει ποιά είναι η πιθανότητα να πάρει δύο μπάλλες.Και οι συνδυασμοί είναι αρκετοί.Eδώ παίζει θεωρία πιθανοτήτων :p
(α)
1) 1/10
2) 4/9
(β)
9/10
:p
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Άμα σου πω ότι πήγα στο φεγγάρι θα το πιστέψεις?
:wow:?
-----------------------------------------
Άμα σου πω ότι πήγα στο φεγγάρι θα το πιστέψεις?
Πάντως είσαι πολύ μεγαλόψυχος ώστε να μη θες να κερδίζεις εσύ στα παιχνίδια αλλά να αφήνεις τον άλλο να είναι ο νικητής!
Το ξέρω, αρχικά νόμιζα πως έτσι θα κέρδιζε η Αννίκα αλλά λίγο μετά είδα πως έτσι θα κέρδιζε μόνο η Ρεβέκκα (για την επιλογή των 3 σπίρτων). Μετά βρήκα ό,τι βρήκε κι ο lostG.
Απλώς το ανέφερα. :what:
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος
Η απλούστερη άσκηση των Πιθανοτήτων, αμφιβάλλω αν καταδέχεται να τη γράψει κι ο Μπάρλας στο βιβλίο του. Γιατί δε μου τα πατε πιο πριν να πάω να δώσω εξετάσεις στην Κύπρο;
Γι' αυτό την έλυσα και εγώ..Τύπους εφάρμοσα
Άμα σου πω ότι πήγα στο φεγγάρι θα το πιστέψεις?
Πάντως είσαι πολύ μεγαλόψυχος ώστε να μη θες να κερδίζεις εσύ στα παιχνίδια αλλά να αφήνεις τον άλλο να είναι ο νικητής!
Πες μας το συλλογισνό σου γιατί τη βρίσκω πολύ μικρή τη πιθανότητά σου στο α.1 ερώτημα.Σκέψου ότι λέει ποιά είναι η πιθανότητα να πάρει δύο μπάλλες.Και οι συνδυασμοί είναι αρκετοί.
Eφάρμοσα τον πολλαπλασιαστικό νόμο των πιθανοτήτων (σελ 167, σχολικό βιβλίο)
Έστω
Κ το ενδεχόμενο να πήρε κόκκινη μπάλα
Κi να πήρε κοκκινη μπάλα σε μια επιλογή i
Πi >> >> πράσινη >> >> >> >> i
Α1 να πήρε άσπρη στην πρώτη επιλογή και έτσι να πήρε και άλλη μπάλα.
Τώρα έστω Q το ενδεχόμενο να πήρε δύο μπάλες. Τότε προφανώς:
και σύμφωνα με τον πολλλαπλασιαστικό νόμο των πιθανοτήτων:
Παρόμοια βγαίνουν και τα άλλα
(Οι πιθανότητες είναι γαματές ...Μακάρι να μας βοηθούσαν να κερδίσουμε και το τζόκερ)
Θα ρωτήσω και κάτι γιατί αλλιώς θα σκάσω..Εκεί που έχω / πειράζει να βάλω κανονικό κλάσμα; Στο βιβλίο γιατί δεν έχει κλάσμα;..Ξέρω βλακεία θα ρώτησα, αλλά ποιος ξέρει τις παραξενιές των μαθηματικών :xixi:
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rolingstones
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος
Λεπτομέρειες δεν ξέρω..Βασικά είδα ότι η άσκηση αυτή είναι παρόμοια μ' αυτές εκείνου του κεφάλαιου και είπα ότι αυτό θα είναι :p
Tίποτα παραπάνω δεν ξέρω...
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rolingstones
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος
Που και που ρίχνω κανά βλέφαρο σε άλλα βιβλία :p
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lostG
Εκκολαπτόμενο μέλος
Το σύμβολο / δεν έχει εδώ την ένοια του κλάσματος αλλά την έννοια του "δεσμεύομαι"Θα ρωτήσω και κάτι γιατί αλλιώς θα σκάσω..Εκεί που έχω / πειράζει να βάλω κανονικό κλάσμα; Στο βιβλίο γιατί δεν έχει κλάσμα;..Ξέρω βλακεία θα ρώτησα, αλλά ποιος ξέρει τις παραξενιές των μαθηματικών :xixi:
Δηλαδή P(A/B) Είναι ακριβώς η πιθανότητα να πραγματοποιηθεί το συμβάν(ενδεχόμενο που λες) Α, με δεδομένο(εδώ μπαίνει η έννοια της δέσμευσης) ότι ήδη έχει πραγματοποιηθεί το Β.Το ξέρεις και είναι βέβαιο δηλαδή ότι το Β έχει πραγματοποιηθεί.
Σκέψου ότι είσαι σε ένα σκοτεινό κυκλικό(?) δωμάτιο όπου μέσα βρίσκονται 3 μαύροι και 7 λευκοί άνθρωποι.
Το ερώτημα ποιά είναι η πιθανότητα να αρπάξω λευκό άνθρωπο ψάχνοντας στο σκοτάδι, είναι διαφορετικό από το ερώτημα ποιά είναι η πιθανότητα να βουτήξω λευκό, με το δεδομένο ότι πρώτα έχω πετύχει ένα μαύρο.
Αλλά ρε συ Djimmakos, αυτές είναι γιά σένα τώρα εγκυκλοπαιδικές γνώσεις, πότε προλαβαίνεις να κάνεις όλες τις άλλες δραστηριότητές σου?Διάβασμα γιά το σχολείο,κανά σινεμά,Κανά playstation, xbox παίζεις?Μπάλλα?Τι ομάδα είσαι?Να ρωτήσω και γιά γκόμενες?Δεν είναι κακό ε?Και είσαι και...βαθμοφόρος στο ischool!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος
Το σύμβολο που λες δεν έχει εδώ την ένοια του κλάσματος αλλά την έννοια του "δεσμεύομαι"
Δηλαδή P(A/B) Είναι ακριβώς η πιθανότητα να πραγματοποιηθεί το συμβάν(ενδεχόμενο που λες) Α, με δεδομενο(εδώ μπαίνει η έννοια της δέσμευσης) ότι ήδη έχει πραγματοποιηθεί το Β.
Σκέψου ότι είσαι σε ένα σκοτεινό κυκλικό(?) δωμάτιο όπου μέσα βρίσκονται 3 μαύροι και 7 λευκοί άνθρωποι.
Το ερώτημα ποιά είναι η πιθανότητα να αρπάξω λευκό άνθρωπο, είναι διαφορετικό από το ερώτημα ποιά είναι η πιθανότητα να βουτήξω λευκό, με το δεδομένο ότι πρώτα έχω πετύχει ένα μαύρο.
Αλλά ρε συ Djimmakos, αυτές είναι γιά σένα τώρα εγκυκλοπαιδικές γνώσεις, πότε προλαβάινεις να κάνεις όλες τις άλλες δραστηριότητές σου?Διάβασμα γιά το σχολείο,κανά σινεμά,Κανά playstation, xbox παίζεις?Μπάλλα?Τι ομάδα είσαι?Να ρωτήσω και γιά γκόμενες?Δεν είναι κακό ε?
Λοιπόν
Playstasion και xbox δεν παίζω... Μόνο υπολογιστή
Φυσικά και παίζω μπάλα..Και φυσικά είμαι και ολυμπιακός..Έχω πάει και στο καραισκάκη 2-3 φορές...
Από βόλτες μια χαρά πάω (και ναι, με παρέα )..Σήμερα θα πάω για μπιλιάρδο..Παίζει κάνα μαθηματικό κόλπο για εκεί;
Kαι όσο για το πότε προλαβαίνω, στο σχολείο..Την ώρα των αρχαίων..6 ώρες έχουμε αρχαία την εβδομάδα, 6 ώρες έχω στη διάθεσή μου να κάνω ότι θέλω
Πραγματικά, στα αρχαία κάνω οτιδήποτε άλλο εκτός από το να προσέχω..Απλώς δε μου κινούν το ενδιαφέρον
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rolingstones
Πολύ δραστήριο μέλος
-----------------------------------------
βιολογια εννοω μεντελ εκει με τις διασταυρωσεις
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 3 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 1 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.