Astrix
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
του F(x)=3ημ2x f'(x) = ;;;
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 039548
Επισκέπτης
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Για απλά παραδειγματα υπαρχουν και υπολογιστες online.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Samael
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Καλησπέρα σας θέλω να βρω μια παραγωγό
του F(x)=3ημ2x f'(x) = ;;;
Λύσε πολλές τέτοιες ασκήσεις για να μάθεις σωστά τους κανόνες . Που θα έπρεπε να ήσουν κανονικά στην ύλη γιατί έχω την αίσθηση οτι θα έπρεπε να είχατε ήδη κάνει παραγώγους .
f'(x) = (3ημ2x)'
1)Οι σταθερές μπορούν να βγούν εκτός παραγώγου.
f'(x) = 3(ημ2x)'
2) Η συνάρτηση εντός της παραγώγου( h(u) = ημu ) είναι μια σύνθετη συνάρτηση καθώς δεν είναι μια απο τις βασικές συναρτήσεις που ξέρουμε αφού u = 2x .
Άρα σύμφωνα με τον κανόνα της αλυσίδας dh/dx = (dh/du)*(du/dx) . Στην περίπτωση μας :
dh/du = (ημu)' = συνu
du/dx = (2x)' = 2
Άρα (ημ2x)' = 2συν(2x)
Τελικά f'(x) = 3*2*συν(2x) = 6συν(2x) .
Κανόνα πηλίκου,κανόνα γινομένου,κανόνα αλυσίδας,κανόνα σταθεράς,κανόνα πρόσθεσης παραγώγων και παραγώγιση πολυωνύμων,ριζών,λογαρίθμου,τριγωνομετρικών και εκθετικών με βάση το e ή άλλο νούμερο πρέπει να γνωρίζεις οπωσδήποτε ώστε να μπορείς να λύνεις τις ασκήσεις .
Πιθανότατα επίσης να χρησιμοποιείς τον συμβολισμό με τον τόνο ωστόσο εδώ ο συμβολισμός f'(x) και df/dx είναι εντελώς ισοδύναμοι . Προς το παρών δεν φαίνεται να κάνει μεγάλη διαφορά, αλλά επειδή είχα πολλές μεταβλητές , ο τόνος δεν δείχνει κάθε φορά ως προς τι παραγωγίζω . Αργότερα εαν με το καλό περάσεις σε τμήμα που έχεις μπόλικα μαθηματικά θα δεις οτι είναι σημαντική λεπτομέρεια,και καλό θα ήταν να συνηθίζεις απο τώρα τον συμβολισμό . Θεωρώ οτι είναι τόσο εκπαιδευτικά όσο και θεωρητικά πιο καλή ορολογία .
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Astrix
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Astrix
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
g(x)= f(2x+1)-2e^2x+1
g'(x) = ;;
g(0) = 0 επειδη η ασκηση λεει f(1) = 2e
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Scandal
Διαχειριστής
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Κλείνω μάτι ;) ;)](https://www.e-steki.gr/images/smilies/wink.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Samael
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
καλησπερα σας παιδια... θελω να βρω μια παραγωγο
g(x)= f(2x+1)-2e^2x+1
g'(x) = ;;
g(0) = 0 επειδη η ασκηση λεει f(1) = 2e
Οι αρχικές συνθήκες είναι γενικά αδιάφορες όταν θέλουμε να παραγωγήσουμε .
Επίσης εφόσον δεν έχουμε τον τύπο της f αναλυτική έκφραση για την παράγωγο της g δεν μπορεί να βρεθεί αλλά το εξής γίνεται :
g'(x) = [f(2x+1) - 2e^(2x+1)]'
g'(x) = [f(2x+1)]' -2[e^(2x+1)]'
g'(x) = f'(2x+1)(2x+1)' - 2(2x+1)'e^(2x+1)
g'(x) = 2f'(2x+1) -4e^(2x+1)
Σύμφωνα με τον κανόνα της αλυσίδας .
Εαν είναι δυνατό θα βόλευε πολύ να έχουμε την πλήρη εκφώνηση μήπως υπάρχει περίπτωση να βρεθεί τελικά αναλυτικά η παράγωγος της g . Χωρίς να σημαίνει βέβαια αυτό οτι το ερώτημα ζητάει κάτι τέτοιο . Απλά επειδή έδωσες αρχικές συνθήκες , κάτι το οποίο γενικά όπως είπα δεν χρειάζεται στην παραγώγιση .
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aekarare
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![](https://www.ischool.gr/imagehosting/957295e2c0dcb66742.jpg)
παιδια χρειαζομαι βοηθεια με τα παραπανω ολοκληρωματα..μπορει καποιος να μου γραψει αναλυτικα πως λυνονται??
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Samael
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![]()
παιδια χρειαζομαι βοηθεια με τα παραπανω ολοκληρωματα..μπορει καποιος να μου γραψει αναλυτικα πως λυνονται??
Το πρώτο ολοκλήρωμα λύνεται όπως ξέρεις απο το λύκειο . Μπορείς να το λύσεις και έτσι,εαν δεν θυμάσαι όμως :
de^(-x)/dx = -e^(-x)
Αρα - de^(-x) = e^(-x) dx .
Παιρνόντας ολοκληρώματα απο 0 εως -1 αριστερά και δεξιά έχουμε :
( e^(-x) | για x = 0 και x = -1 ) = ( e^(-x) | για x = -1 και x = 1 )
Δεξιά προκύπτει η ζητούμενη παράσταση και αριστερά υπολογίζουμε αυτό που προέκυψε .
Ολοκλήρωμα του e^(-x) απο 0 εως -1 = e^(-0) - e^(-(-1)) = 1 - e .
Το δεύτερο ολοκλήρωμα τώρα . Αποτελεί γενικευμένο ολοκλήρωμα . Η αντιμετώπιση του δεν διαφέρει δραματικά . Απλά εδώ στα όρια παίρνεις 2 εως +οο και αριστερά υπολογίζεις :
e^(-2) - e^(-oo) = 1/e²
Άρα το ολοκλήρωμα απο το 2 εως το +οο του e^(-x) = 1/e² .
Φυσικά κάποια βήματα σε γενικές περιπτώσεις δεν μπορούν να εφαρμοστούν έτσι γιατί υπάρχει ο κίνδυνος η συνάρτηση να μην είναι συνεχής . Ωστόσο εδώ με γρήγορη εποπτεία μπορούμε να δούμε οτι αυτό δεν ήταν πρόβλημα . Και εννοείται οτι το ολοκλήρωμα μπορεί υπο άλλες περιπτώσεις να μην συγκλίνει . Ούτε αυτό συναντήσαμε όμως .
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aekarare
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Το πρώτο ολοκλήρωμα λύνεται όπως ξέρεις απο το λύκειο . Μπορείς να το λύσεις και έτσι,εαν δεν θυμάσαι όμως :
de^(-x)/dx = -e^(-x)
Αρα - de^(-x) = e^(-x) dx .
Παιρνόντας ολοκληρώματα απο 0 εως -1 αριστερά και δεξιά έχουμε :
( e^(-x) | για x = 0 και x = -1 ) = ( e^(-x) | για x = -1 και x = 1 )
Δεξιά προκύπτει η ζητούμενη παράσταση και αριστερά υπολογίζουμε αυτό που προέκυψε .
Ολοκλήρωμα του e^(-x) απο 0 εως -1 = e^(-0) - e^(-(-1)) = 1 - e .
Το δεύτερο ολοκλήρωμα τώρα . Αποτελεί γενικευμένο ολοκλήρωμα . Η αντιμετώπιση του δεν διαφέρει δραματικά . Απλά εδώ στα όρια παίρνεις 2 εως +οο και αριστερά υπολογίζεις :
e^(-2) - e^(-oo) = 1/e²
Άρα το ολοκλήρωμα απο το 2 εως το +οο του e^(-x) = 1/e² .
Φυσικά κάποια βήματα σε γενικές περιπτώσεις δεν μπορούν να εφαρμοστούν έτσι γιατί υπάρχει ο κίνδυνος η συνάρτηση να μην είναι συνεχής . Ωστόσο εδώ με γρήγορη εποπτεία μπορούμε να δούμε οτι αυτό δεν ήταν πρόβλημα . Και εννοείται οτι το ολοκλήρωμα μπορεί υπο άλλες περιπτώσεις να μην συγκλίνει . Ούτε αυτό συναντήσαμε όμως .
Επειδη στο πανεπιστημιο τα καναμε αλλιως και δεν καταλαβαινω πως τα κανεις θα στειλω φωτο πως τα λυνω εγω και αν μπορεις πες μου που εχω λαθος
![](https://www.ischool.gr/imagehosting/957295e2c4a9ad7a41.jpg)
στο πρωτο σε τι εχω λαθος?..στο δευτερο ξερω να το παω μεχρι εκεινο το σημειο..ουσιαστικα κολλαω στο lim με το χ να τεινει στο + απειρο
νομιζω στο πρωτο βρηκα το λαθος μου..πρεπει απλα πρωτα να κανω το lim με το x τεινει στο 1 και μετα το lim με το x τεινει στο 0..τοτε βγαινει:-e^-1 +1 που ειναι και η σωστη απαντηση(επισης στην αρχη ειχα γραψει λαθος το πρωτο ολοκληρωμα ειναι 1 οχι -1)..τωρα απλα κολλαει στο δευτερο ολοκληρωμα γιατι δεν ξερω τι να κανω το lim με το + απειρο
Νομιζω βρηκα και την λυση του δευτερου..το e^-oo ισουται με 0;μαλλον εκει κολλουσα
![](https://www.ischool.gr/imagehosting/957295e2c54294083f.jpg)
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Samael
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
νομιζω στο πρωτο βρηκα το λαθος μου..πρεπει απλα πρωτα να κανω το lim με το x τεινει στο 1 και μετα το lim με το x τεινει στο 0..τοτε βγαινει:-e^-1 +1 που ειναι και η σωστη απαντηση(επισης στην αρχη ειχα γραψει λαθος το πρωτο ολοκληρωμα ειναι 1 οχι -1)..τωρα απλα κολλαει στο δευτερο ολοκληρωμα γιατι δεν ξερω τι να κανω το lim με το + απειρο
Νομιζω βρηκα και την λυση του δευτερου..το e^-oo ισουται με 0;μαλλον εκει κολλουσα
![]()
Είσαι σωστός τότε και στο πρώτο,εφόσον τελικά είναι 1 και όχι -1 και στο δεύτερο . Απλά στα γενικευμένα ολοκληρώματα δεν υπολογίζεις ακριβώς την συνάρτηση στο άπειρο ,αλλά παίρνεις το όριο της .Λογικά αυτό θα σε μπέρδευε . Όπως και εαν επιλέξεις να το δεις πάντως είσαι σωστός .
Ο τρόπος που το έλυσα αρχικά απαιτεί πολύ καλή εξοικείωση με τα διαφορικά . Γενικά δεν είναι απαραίτητο όμως για να κάνεις τις πράξεις . Εαν τυχόν κάποια στιγμή κάνεις ή το απαιτεί το πτυχίο σου, προχωρημένη μηχανική θα καταλάβεις όμως πόσο βοηθάει .
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aekarare
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Είσαι σωστός τότε και στο πρώτο,εφόσον τελικά είναι 1 και όχι -1 και στο δεύτερο . Απλά στα γενικευμένα ολοκληρώματα δεν υπολογίζεις ακριβώς την συνάρτηση στο άπειρο ,αλλά παίρνεις το όριο της .Λογικά αυτό θα σε μπέρδευε . Όπως και εαν επιλέξεις να το δεις πάντως είσαι σωστός .
Ο τρόπος που το έλυσα αρχικά απαιτεί πολύ καλή εξοικείωση με τα διαφορικά . Γενικά δεν είναι απαραίτητο όμως για να κάνεις τις πράξεις . Εαν τυχόν κάποια στιγμή κάνεις ή το απαιτεί το πτυχίο σου, προχωρημένη μηχανική θα καταλάβεις όμως πόσο βοηθάει .
ειμουν απο βιολογια και αυτα τα λιγα ολοκληρωματα θα μου χρειαστουν στις πιθανοτητες..το αλλο εξαμηνο θα κανω ολοκληρωματα στα μαθηματικα..οποτε για αυτο εχω μια δυσκολια..ευχαριστω πολυ
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Samael
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ειμουν απο βιολογια και αυτα τα λιγα ολοκληρωματα θα μου χρειαστουν στις πιθανοτητες..το αλλο εξαμηνο θα κανω ολοκληρωματα στα μαθηματικα..οποτε για αυτο εχω μια δυσκολια..ευχαριστω πολυ
Κατάλαβα ,λογικό τότε !
Διάβασε και δεν θα έχεις πρόβλημα . Να ξέρεις πάντως οτι ο διαφορικός και ολοκληρωτικός λογισμός είναι όψεις του ίδιου νομίσματος . Μάθε και τα δύο κεφάλαια πολύ καλά .
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aekarare
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 749981
Επισκέπτης
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αν ναι, τότε το τριώνυμο δεν πρέπει να μηδενίζεται,
άρα Δ < 0
<=> α^2 - 4*1*9 < 0
<=> -6 < α < 6.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aekarare
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Love2 <3 <3](https://www.e-steki.gr/images/smilies/2018/love2.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 749981
Επισκέπτης
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Είναι δευτεροβάθμια ανίσωση και δε λύνεται τόσο άμεσα όσο η εξίσωση. Το α<±6 δεν υφίσταται. Αφού βρεις τις ρίζες της αντίστοιχης εξίσωσης κάνεις τον πίνακα προσήμου.γιατί έτσι όμως; αφού άμα λύσουμε το a^2-36<0..Θα είναι a^2< 36..a<+-6
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aekarare
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Μάρκος Βασίλης
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Καλημέρα παιδιά..ειναι μια άσκηση που δίνει την εξίσωση x^2-3x+2 και λεει να γίνει η μελέτη της..παιρνω την πρώτη παραγωγό(f(x)=2x-3) και βρίσκω μονοτονία και ακροοτατα..Πάω μετά να βρω κυρτοτητα από την 2η παραγωγο..Αλλά η δεύτερη παραγωγός είναι f"(x)=2..Πρέπει απλά να γράψω στην άσκηση ότι αφού η παραγωγός είναι θετική παντού τότε τα κοιλα είναι παντού προς τα πάνω;(για να απαντησω για την κυρτοτητα)
Ναι, αυτό εννοεί, αλλά:
- Δε δίνεται μία «εξίσωση», αλλά μία «συνάρτηση»/ένα «τριώνυμο» κ.λπ.. Προσοχή με την ορολογία!
- Δε χρειάζεται να πάρουμε τόσο βαρβάτα εργαλεία για να μελετήσουμε ένα τριώνυμο. Από την Α' λυκείου, γνωρίζουμε πού παρουσιάζει ένα τριώνυμο ακρότατα, ποιες είναι οι ρίζες του, ποια είναι η μονοτονία του και πότε στρέφει τα κοίλα άνω/κάτω. Μπορείς να τα ξαναθυμηθείς από εδώ.
Guest 749981
Επισκέπτης
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Μου θύμισε το θέμα που ρώτησε ο φίλος τις προάλλες. Νομίζω εύκολη και γρήγορη άσκηση, αλλά η παγίδα που έκρυβε κόστισε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 2 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 4 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.